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Received: 28 January 2005 /
Published online: 8 April 2005 – c© Springer-Verlag / Società Italiana di Fisica 2005

Abstract. We use the framework of effective field theories to discuss the determination of the S-wave
πN scattering lengths from the recent high-precision measurements of pionic deuterium observables. The
theoretical analysis proceeds in several steps. Initially, the precise value of the pion–deuteron scattering
length aπd is extracted from the data. Next, aπd is related to the S-wave πN scattering lengths a+ and
a−. We discuss the use of this information for constraining the values of these scattering lengths in the full
analysis, which also includes the input from the pionic hydrogen energy shift and width measurements,
and thoroughly investigate the accuracy limits for this procedure. In this paper, we also give a detailed
comparison to other effective field theory approaches, as well as to the earlier work on the subject, carried
out within the potential model and multiple scattering framework.
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1 Introduction

The Pionic Hydrogen collaboration at PSI [1,2] has per-
formed high-precision measurements of the strong interac-
tion shift ε1s and width Γ1s of the 1s state of pionic deu-
terium from the 3p–1s X-ray transition. The (complex)
pion–deuteron scattering length was extracted from these
measurements with the use of the leading-order Deser for-
mula [3]

−ε1s + i
Γ1s

2
=

4E1s

rB
aπd , (1.1)

where E1s = 1
2 α

2µd is the Coulomb binding energy in
the 1s state, and rB = (αµd)−1 denotes the Bohr ra-
dius (in these formulae, µd stands for the reduced mass
of the πd system). The most recent measurement of the
pion–deuteron scattering length by the Pionic Hydrogen
collaboration at PSI [2] yields

aπd =
(

−0.0261 (±0.0005) + i 0.0063 (±0.0007)
)
M−1

π .

(1.2)

� This research is part of the EU Integrated Infrastructure
Initiative Hadron Physics Project under contract number RII3-
CT-2004-506078. Work supported in part by DFG (SFB/TR
16, “Subnuclear Structure of Matter”).

a On leave of absence from High Energy Physics Institute,
Tbilisi State University, University St. 9, 380086 Tbilisi, Geor-
gia.

Performing experiments to determine aπd is usually jus-
tified by the possibility of extracting independent infor-
mation about the πN S-wave isoscalar (a+) and isovector
(a−) scattering lengths. What makes this enterprise par-
ticularly interesting is the fact that in the multiple scat-
tering theory aπd = const · a+ + correction terms. If one
could accurately evaluate the higher-order terms in this
expression, then a precise measurement of aπd would en-
able one to constrain the value of a+, which is in general
a rather delicate task. The reason for this is that, since
a+ is much smaller than the isospin-odd scattering length
a−, a very high accuracy is needed in order to determine
a+ from the measurements of the linear combinations of
a+ and a−. This is exactly the case in the experiments
measuring the pionic hydrogen energy shift and width,
which enable one to determine the combinations (a++a−)
and a−, respectively. Thus, the measurement of aπd con-
tributes a complementary piece of information about the
scattering lengths, which can be used in the complex theo-
retical analysis finally aimed at the determination of both
a+ and a− [4]. We wish to mention here that these scat-
tering lengths are quantities of fundamental importance
in low-energy hadronic physics, since they test the QCD
symmetries and the exact pattern of the chiral symmetry
breaking. Moreover, since the knowledge of these scatter-
ing lengths places a constraint on the πN interactions at
low energy, it also affects our understanding of more com-
plicated systems where πN interaction serves as an in-
put, e.g. the NN interaction, π–nucleus scattering, three-
nucleon forces, etc.
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Expressing the πd scattering length in terms of the pa-
rameters characterizing the underlying pion–nucleon and
nucleon–nucleon dynamics is one of the classical problems
in conventional nuclear physics based on the potential
scattering formalism; see, e.g. [5–13]. Note, however, that
the experiments on pionic deuterium will be used to ex-
tract the πN scattering lengths in QCD and not in any
potential model. In other words, using the latter in order
to establish the relation between πd and πN scattering
lengths introduces a theoretical error in the analysis of
the experimental data, whose magnitude is very hard to
control.

In recent years, the problem of a very low-energy pion–
deuteron scattering has been studied within the frame-
work of effective field theories (EFTs). The method orig-
inates from the seminal paper of Weinberg [14], where
chiral Lagrangians have been systematically applied for
the description of interactions of pions with nuclei. In this
paper, by using the chiral Lagrangian, one calculates the
set of diagrams contributing to the “irreducible transition
kernel” for the pion scattering on two nucleons, and the re-
sult is then sandwiched between “realistic” deuteron wave
functions in order to evaluate the scattering amplitude of
the pion on the deuteron. In actual calculations carried
out in [14], the phenomenological deuteron wave function
for the Bonn potential model has been used. We wish to
note that this last step, in general, can be justified within
the framework of the effective field theories, only if the
particular process which one is going to describe is domi-
nated by the long-range mechanisms, e.g. by one-pion ex-
change. On the other hand, when the calculations within
such a “hybrid” approach are pursued in higher orders
in chiral perturbation theory (ChPT), the kernels grow
faster with a large momenta and probe shorter distances.
Moreover, this short-distance behavior is not necessarily
correlated to that of the phenomenological wave function.
From this we conclude that in order to obtain a systematic
description of the pion–deuteron system, it is preferable
to use the deuteron wave functions and the transition ker-
nels, evaluated within the same field-theoretical setting –
in this case, no specific conjecture about the dominance
in the unobservable quantities, like the kernel or the wave
function is needed. For the latest work within the hybrid
approach, see e.g. [15,16].

Further development of the approach based on chi-
ral Lagrangians (see, e.g., [15–20]), has followed differ-
ent paths. In the paper [18] one has used the framework
with perturbative pions, whereas the authors of [19] make
use of the so-called heavy pion EFT (HP EFT) with the
dibaryon field. The latter approach is quite close to the
one used in the present work. The technique used in [18,
19] has the advantage that one may easily construct the
deuteron wave function in a closed form, since the lowest-
order nucleon–nucleon interactions are described by a con-
tact four-nucleon vertex. The central problem in both the
papers is related to the calculation of one particular dia-
gram, describing double scattering of pions. These calcula-
tions lead to a very strong scale dependence near µ � Mπ

– a natural choice of the scale parameter in this sort of the

effective theories. Since, on the other hand, this depen-
dence must be canceled by a contribution from the low-
energy constant (LEC), which describes point-like inter-
actions of four nucleons and two pions, we easily conclude
that the magnitude of this LEC cannot be small. In the
absence of any information about the actual value of this
LEC apart from naive dimensional order-of-magnitude es-
timates based on the naturalness arguments, one may fi-
nally conclude that the theoretical uncertainty in the re-
lation of πd and πN scattering lengths should be very
large.

On the other hand, the results obtained in [20] seem
not to be in agreement with those of [18,19]. The method
which is used in [20] is a systematic extension and elab-
oration of Weinberg’s original proposal, where both the
transition kernel and the deuteron wave function are con-
structed in ChPT (note also, that the systematic deriva-
tion of the unitary and the energy-independent potentials
within this framework has been discussed recently in [21]).
The approach uses cutoff regularization to deal with the
potentials that are growing for a large three-momenta.
The typical scales for the cutoff mass Λ are somewhat
smaller than the hadronic scale in QCD ∼ 1 GeV (de-
pending on the order in ChPT in which the calculations
are carried out). The results of the calculations are Λ-
dependent, which is a reminiscent of the scale dependence
in the dimensional regularization scheme. The bulk of this
Λ-dependence should be canceled by an analogous depen-
dence in the LECs, and the remainder, which is an arti-
fact of the non-perturbative formalism used, should be of
a higher order in ChPT. In [20], the cutoff dependence of
the πd scattering length has been studied, with the LECs
assumed to vanish. In a remarkable contrast with [18,19],
the Λ-dependence of the results in [20] turns out to be
very mild, thereby concluding that the LECs must have
a weak cutoff dependence. If one could interpret the cut-
off dependence as an estimate of the uncertainty of the
method, then the results of [20] would amount to a rather
accurate prediction of the πd scattering length within the
framework of ChPT.

The present situation which was described above is
unacceptable from the point of view of both the theory
and the phenomenological analysis of the data. From the
theoretical point of view, the calculations carried out in
[20] clearly indicate that the diagrams in which the virtual
pions are emitted or annihilated are strongly suppressed.
This phenomenon originates from the infrared enhance-
ment of a certain class of the diagrams in the Weinberg
scheme, as well as the threshold suppression of the di-
agrams containing pseudoscalar vertices. In order to ac-
commodate the above feature in the theory with non-
perturbative pions, in [20] a novel counting, inspired by
the HP EFT, has been enforced on top of the conven-
tional ChPT Lagrangian. Stated differently, this means
that simpler effective theories, which were used in [18,
19], are physically adequate for the problem considered.
How can it then be that using a simpler theory, we get an
answer which contradicts the answer obtained in Wein-
berg’s framework [20], the very approach one starts from?
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From the point of view of phenomenology, the existing
conflicting predictions, on the one hand, do not encourage
the experimentalist’s efforts to measure the pion–deuteron
scattering length to a better accuracy and, on the other
hand, suggest that the values of the πN scattering lengths
extracted from the analysis of the πd data should be taken
with a grain of salt.

The aim of the present paper is to perform a thor-
ough investigation of pion–deuteron scattering at thresh-
old within the framework of low-energy effective theories.
In particular, we plan to clearly establish the limits of
accuracy for extracting πN scattering lengths from the
measured πd scattering lengths. We also perform a de-
tailed study of the above-mentioned discrepancy between
the results obtained within the HP EFT and in the Wein-
berg approach. Moreover, the investigation of this subtle
question, in our opinion, is by itself very informative and
sheds light on many peculiar aspects of the effective field
theories in general.

The complex problem, which we are going to consider
in this paper, naturally falls into several subproblems,
which are characterized by distinct momentum scales.
Consequently, instead of trying to describe everything at
once, it is convenient to construct a tower of effective field
theories, matched one to another, each designed for one
particular momentum scale.
(i) At the momentum scales αµd � 1 MeV, the charged
pion and the deuteron form an atom, whose observables
are measured by the experiment. The characteristic dis-
tances in such an atom – hundreds of fm – are much
larger than the deuteron size, and the binding energy
in the ground state, which almost coincides with the
Coulomb binding energy E1s = 1

2 α
2µd � 3.5 · 103 eV,

is much smaller than the binding energy of the deuteron,
ε = 2.22457 MeV. Stated differently, at these energies the
deuteron cannot be resolved as a composite particle, and
the effective theory, which describes the atom, contains
the deuteron field (not the nucleon fields) as an elemen-
tary degree of freedom. The hard momentum scale in this
effective theory is given by the average value of the three-
momentum of the nucleons bound within the deuteron,
γ =

√
εm � 45 MeV, where m stands for the nucleon

mass. The expansion parameter in this theory is given by
the ratio of the scales αµd/γ = O(α). The output from
the calculations within this effective theory is a relation
which connects the measured energy shift of the πd bound
state to the πd scattering amplitude at threshold in the
next-to-leading order in isospin breaking. In its turn, the
latter at the leading order in isospin breaking coincides
with the πd scattering length aπd.
(ii) Extracting the scattering length from the pionic deu-
teron one next has to find the relation of this quantity to
the πN S-wave scattering lengths a+ and a−. In order to
achieve this goal, we have to construct another effective
field theory, in which the independent degrees of freedom
are the pion and the nucleon fields, whereas the deuteron
emerges as a bound state of the proton and the neutron.
The characteristic momentum scale in this theory is de-
fined by the binding momentum γ. Furthermore, a careful

analysis of the results of [20] provides us with an impor-
tant clue: The processes in which the virtual creation and
annihilation of pions takes place are suppressed as com-
pared to the processes where this does not occur (although
both processes may formally have the same chiral order).
Note that these processes naturally come together in the
conventional relativistic QFT. This fact clearly indicates
that the most economic way to describe πd scattering at
threshold is to design an effective field theory, in which
the pion creation and annihilation processes are explicitly
excluded – all vertices in the Lagrangian contain an equal
number of ingoing and outgoing pions and nucleons. The
whole information about these processes is, however, not
lost: it is included in the pertinent LECs of such an effec-
tive theory. Moreover, it is also clear that for such small
energies, one can treat kinematical relativistic factors as
perturbations both for pions and for nucleons.

The calculations of the deuteron properties in the abo-
ve-described theory, which will be referred to as the heavy-
pion effective theory hereafter, dramatically simplify and
can be performed analytically. The output of the calcula-
tions is the quantity aπd, expressed in terms of the thresh-
old parameters of the πN and NN scattering. The hard
scale in such a theory is given by the pion mass Mπ, and
the expansion parameter is given by the ratio of scales
γ/Mπ � 1/3. The matching to the previous effective the-
ory is performed for the πd scattering amplitude at thresh-
old: this quantity must be the same in both theories.

Note also that from now on we neglect all isospin-
breaking effects (one could not do this at the earlier step,
because the pionic deuterium is created predominately by
Coulomb interactions.). In this approximation, the thresh-
old scattering amplitude coincides with the πd scattering
length aπd. If needed, the isospin-breaking effects can be
turned on later.
(iii) The simplicity of the calculations in the HP EFT co-
mes at the cost of the large size of the LECs. Since the
hard scale of the theory is determined by Mπ, this is also
the scale that enters in the estimate of the size of the (un-
known) LECs in the assumption that these LECs have
the natural size (note that some LECs might be para-
metrically enhanced as compared to the value which is
expected on the purely dimensional grounds; see below).
On the other hand, if the calculations are done in ChPT,
the natural-size LECs are suppressed by a higher scale
4πFπ � 1 GeV rather than Mπ. Thus, the rationale for
performing calculations in the Weinberg framework can
be formulated as follows. In these calculations, one “re-
solves” the dynamics of the system at the scales from Mπ

up to the scale ∼ 1 GeV, which is the energy range where
the interactions in the system of few pions and nucleons
are predominately determined by (multi)-pion exchanges.
One may then assume that the bulk contribution to the
HP LECs comes from the momentum region between Mπ

and 1 GeV and can be expressed in terms of pion loops,
which are calculated in the Weinberg scheme.

If we suppose that such a scheme is realized, we arrive
at the effective theory, where the characteristic momenta
are of order Mπ and the hard scale is given by 4πFπ. The
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expansion parameter, in the absence of another scale, is
given by the ratio of two scales Mπ/(4πFπ). The matching
to the HP EFT is performed for the S-matrix element of
the process πNN → πNN , that determines a particular
LEC of the HP Lagrangian. One of the objectives of the
present paper is to find out whether doing the calculations
in the Weinberg framework and performing the matching
to the HP EFT enables one to indeed reduce the uncer-
tainty related to the choice of LECs.

The organization of the paper follows the above-descri-
bed scheme of “nested” effective field theories. Namely, in
Sect. 2 we consider the precise extraction of the πd scat-
tering length from the experimental data on the pionic
deuterium. Then, in Sect. 3, we construct the systematic
heavy-pion effective theory (HP EFT) in order to calculate
the πd scattering lengths in terms of the threshold param-
eters of πN and NN interactions. In order to establish the
connection to ChPT in the Weinberg scheme, in Sect. 4 we
perform the matching of the threshold amplitudes in both
theories. We also provide a numerical analysis and discuss
the question of accuracy. A detailed comparison to the ex-
isting approaches is carried out in Sect. 5. Finally, Sect. 6
contains our conclusions.

2 Pionic deuterium

In the experiment at PSI [1,2], one measures the energy
of the 3p–1s X-ray transition, deducing the strong shift
of the pionic deuterium in the 1s state and the πd scat-
tering length from this measurement. At the first step,
in order to obtain the strong shift, one has to subtract
the so-called “electromagnetic shift” from the full mea-
sured value, where the former is calculated in the accu-
racy that matches the experimental precision. At the next
step, the πd scattering length should be extracted from
the strong shift by means of the Deser-type formula (1.1).
If required for accuracy considerations, the latter relation
can also be generalized to include next-to-leading order
isospin-breaking corrections.

To the best of our knowledge, complete calculations of
the electromagnetic shift in the pionic deuterium are not
available in the literature, except the results contained
in Table 1 of [1], where different contributions are given
without a derivation. The investigations in [22] are not
complete – as the authors themselves note, they do not
include all isospin-breaking corrections at next-to-leading
order. In order to have a complete and transparent field-
theoretical treatment of the pionic deuterium problem at
all levels, we find it appropriate here to re-derive the ex-
pression for the full energy shift at order α4, α3(md−mu),
and to check (at least, numerically) the results given in
Table 1 of [1].

The method, which will be used in our calculations, is
analogous to the one applied recently to describe π+π−
[23–26], π−p [27,28], πK [26] and K−p [29] atoms. In this
section, we display only the final results of the calculations
– the necessary details are provided in Appendix A. The
full binding energy in a given stationary state of the pionic
deuterium depends on the principal quantum number n,

on the orbital quantum number l and on the total angular
momentum j. For a given l (except l = 0) the total angular
momentum j takes the values j = l− 1, l, l+1. This split-
ting, which is explicitly evaluated in Appendix A, is tiny.
The following averaged value is relevant for the analysis
of the experimental data:

Enl =
1

6(l + 1/2)

l+1∑
j=l−1

(2j + 1)Enlj , (2.1)

Up to the next-to-leading order in isospin breaking, the
full energy shift of the nl state can be separated in what
is called “electromagnetic” and “strong“ parts. In order to
simplify the comparison to the existing results, the former
is additionally split by hand in different pieces. Finally, at
this order one obtains

Enl = Eem
nl +∆Estr

nl ,

Eem
nl = EKG

nl +∆Erel
nl +∆Efin

nl +∆Evac
nl . (2.2)

In the above formula, we have chosen the same naming
scheme as in [1]. Note that in this paper individual contri-
butions are not specified explicitly, so the identification,
which is given below and in Table 1, is performed by anal-
ogy with the pionic hydrogen case [30]. Our explicit ex-
pressions are given below:

EKG
nl = −α2µd

2n2

(
1 +

α2

n2

[
2n

2l + 1
− 3

4

])
,

∆Erel
nl =

3α4µ2
d

8n4(Md +Mπ)

(
4n

l + 1/2
− 3
)

− α4µ3
d

4MdMπn4

(
−4nδl0 − 4 +

6n
l + 1/2

)
,

∆Efin
nl = δl0

2
3n3 α

4µ3
d(〈r2d〉 + 〈r2π〉) , (2.3)

where Md denotes the mass of the deuteron. An explicit
expression for the vacuum polarization contribution is gi-
ven in [31]; see (3) of that paper.

Table 1. Comparison of the electromagnetic corrections to
the E3p–E1s transition energies, calculated in [1] and in the
present paper. The second entry for the finite-size effect has
been obtained, using the latest experimental data on the charge
radii. We did not address the calculation of the last two entries
in this table

Calculated corrections [1] This work
to E3p − E1s [eV]

Point nucleus (Klein–Gordon) 3074.69 3074.69
Nuclear and π− finite size −0.51 −0.52

−0.53 [33,34]
Vacuum polarization α(Zα) 3.72 3.72
Relativistic recoil −0.02 −0.02
Higher order radiative 0.04 –
corrections
Nuclear polarization 0.03 –
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In order to be able to compare with the existing re-
sults, our numerical calculations have been performed for
the same values of the input parameters as in [1]. We take
the deuteron binding energy to be ε = 2.22457 MeV, and
the charge radii of the deuteron and of the pion are taken
to be equal 〈r2π〉1/2 = 0.657 fm and 〈r2d〉1/2 = 2.106 fm, re-
spectively. The calculations were performed for the value
of the charged pion mass ofMπ = 139.57018 MeV. In addi-
tion, the calculation of the finite-size correction has been
performed by using the latest data for the charge radii
〈r2π〉 = 0.452± 0.013 fm2 [33] and 〈r2d〉1/2 = 2.1303(66) fm;
see [34] and references therein (the result changes slightly).
The results of our calculations and the comparison to the
results of [1] are given in Table 1. Note that we have not
calculated higher-order (next-to-next-to-leading) isospin-
breaking corrections that are given in the last two entries
of this table. The results of the calculations from [1] in
these cases should be taken at face value. It can be im-
mediately seen from the table that our calculations com-
pletely confirm the results of [1] at next-to-leading order
– the agreement between the two columns is perfect.

After having subtracted the calculated electromagnetic
contributions from the measured transition energy, one
finally arrives at the strong shift, which is related to the
πd scattering length. Since in the p-states the strong shift
is proportional to α5 and is thus tiny, the measurement of
the quantity E3p − E1s yields directly the strong shift in
the 1s-state. In next-to-leading order in isospin breaking,
the strong shift for the states with l = 0 is given by

∆Estr
n0 = εns − i

Γns

2
= − α3µ3

d

2πMπn3 Tπd

×
{

1 − αµ2
d

4πMπ
Tπd(sn(α) + 2πi) + δvacn

}
,

sn(α) = 2
(
ψ(n) − ψ(1) − 1

n
+ lnα− lnn

)
,

ψ(x) = Γ ′(x)/Γ (x) , (2.4)

where the quantity Tπd denotes the threshold scattering
amplitude in the presence of photons, which is obtained
from the conventional amplitude by subtracting all singu-
lar contributions at threshold (see [23–29] for more details
and definitions). The normalization of this quantity is cho-
sen so that in the absence of the isospin-breaking effects,
it reduces to the πd scattering length

Tπd = 4π
(

1 +
Mπ

Md

)
aπd + · · · , (2.5)

where the ellipses stand for terms vanishing at α = 0 and
md = mu. These terms can be in principle evaluated in
ChPT in a systematic manner, in analogy with the more
simple cases of πN [35,36] and NN [37] scattering. Fur-
ther, the quantity δvacn = 2δΨn(0)/Ψn(0) stands for the
vacuum polarization correction to the strong shift (δΨn(0)
denotes the correction of the Coulomb wave function Ψn(0)
at the origin due to the vacuum polarization effects). This
correction was evaluated in [31] only for the ground state.
However, the approach used in this paper can be straight-

forwardly generalized for the radially excited states. Fi-
nally, it is interesting to note that the n-dependence of
the correction term in (2.4) is universal, since short-range
effects are the same in all atomic states. For this reason,
even potential models (see, e.g., [32]) agree with our result
in what concerns the difference of the correction terms in
the states with a different n.

To summarize, in this section we have checked the va-
lidity of the procedure which is used for the theoretical
analysis of the pionic deuterium data at PSI. The cal-
culated electromagnetic shift agrees very well to the one
given in [1]. Further, we have obtained the general expres-
sion for the (complex) strong energy shift of the pionic
deuterium in the next-to-leading order in isospin break-
ing, in terms of the πd threshold scattering amplitude.
This relation should in principle be used to replace the
lowest-order formula (1.1) in the data analysis. Note, how-
ever, that the Coulomb correction which is explicitly dis-
played in (2.4) (second term in the brackets) is of the
order of 2 · 10−3 if one replaces Tπd by (2.5) and uses the
value of the scattering length given in (1.2). Note also
that 10−2 · · · 10−3 is an expected order of magnitude for
the vacuum polarization contribution in (2.4) [31]. Since
there are no obvious reasons for having an anomalously
large isospin-breaking correction in the quantity Tπd ei-
ther (see e.g. [1,2] and references therein), in the follow-
ing we do not consider isospin-breaking corrections to the
energy shift at all and concentrate on the lowest-order
relation (1.1). If it turns out that the determination of
the πN scattering lengths from the analysis of the pionic
deuterium data can be performed at a few percent level
that requires the inclusion of the isospin-breaking effects
in (1.1), one can always go back to the relation (2.4).

3 Heavy-pion effective theory
for πd scattering

3.1 The Lagrangian

The findings of [20], as well as the earlier work on the sub-
ject (see, e.g., [14]) serve as a clear indication of the fact
that the chiral counting is not the most suitable one to
be applied for the description of low-energy πd scattering.
Most straightforwardly, this can be visualized by compar-
ing the contributions from the individual diagrams, de-
picted in Fig. 2 of [20], which is reproduced here, in Fig. 1.
The contribution from the diagrams 1b and 1c is by two
orders of magnitude smaller than the contribution from
1a, although all three diagrams emerge at the same chiral
order. The reason for this difference is that, in contrary
to 1a, the diagrams 1b and 1c describe processes with the
virtual pion emission/absorption (additional suppression
at a small momenta is caused by the presence of the γ5
vertices in the diagrams 1b and 1c).

The above discussions lead to the conclusion that it
will be convenient to describe the πd scattering at thresh-
old in a framework in which the absorption and emission of
hadrons does not appear explicitly at the level of Feynman
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a b c

Fig. 1. Leading-order three-body graphs which contribute to
the πd scattering length in the Weinberg scheme (same as in
[20]). Shaded blobs stand for the deuteron wave function, and
the solid and dashed lines denote nucleons and pions, respec-
tively. Numerically, graphs b and c are suppressed by two or-
ders of magnitude as compared to graph a

diagrams, but is included in the couplings of the effective
Lagrangian. In this manner, we arrive at the theory which
must be in the spirit of HP EFT (see [19] and references
therein). Below we dwell on some differences which exist
between the approach used here and in [19].
(i) The HP EFT of [19] uses the notion of the dibary-
on field, whereas we work in terms of the elementary
nucleon constituents and sum up all interactions in the
NN subsystems. After substituting the expression for
the couplings of the Lagrangian in terms of the observ-
ables (coefficients in the effective range expansion), the
“deuteron propagator” in the present paper coincides with
the dibaryon propagator of [19] in the limit of vanishing
effective range. We opt to work in terms of nucleon field
in order to make the comparison with ChPT in the Wein-
berg picture more transparent.
(ii) It has been argued that the technique based on the
introduction of the dibaryon field enables one to effec-
tively sum up all potentially large contributions coming
from the large scattering length and the effective range,
whereas higher-order terms can be treated perturbatively.
The results of the present paper are obtained under the ad-
ditional assumption that the effective-range term is small,
leading to some technical simplifications. This assumption
is, however, not critical – the inclusion of the effective
range term is straightforward in our approach and does
not affect the conclusions.
(iii) In [19] the authors have studied one particular dia-
gram that corresponds to the double-scattering contribu-
tion the πd scattering length. In this paper, a systematic
expansion of the quantity aπd is performed in the small
parameter x = γ/Mπ, up to and including terms of order
x. At this order, there are additional diagrams apart from
the one mentioned above.
(iv) The most important question is the convergence of the
series for the πd scattering length. We believe that there
are (indirect) indications which testify in favor of the con-
vergence. First of all, at the momenta γ � 45 MeV, the
pionless effective theory gives still a reasonable description
of the NN sector. As was mentioned, this fact is in agree-
ment with the observation made in [20] that the “modified
power counting” in the πd scattering length works much

better than the original chiral counting1. Yet another jus-
tification of the method is provided by the well-known
fact that, in the Faddeev approach, the multiple scatter-
ing series for the threshold πd scattering amplitude are
rapidly convergent, since the πN scattering lengths are
much smaller than the deuteron radius (see e.g. [16] and
references therein).

After these preliminary remarks, let us consider the
Lagrangian of our theory. By construction, the Lagrangian
does contains only vertices with the same number of the
incoming and outgoing pions and nucleons. Restricting
ourselves to the non-derivative couplings, one may easily
write down the most general form of this Lagrangian (in
addition, we omit below also all three-body non-derivative
terms which contain π+, π0 and/or theNN -pair in the 1S0
state: such terms do not contribute to the π−d threshold
scattering amplitude at the accuracy we are working):

L=π†
(

i∂t −Mπ +
�

2Mπ
+

�2

8M3
π

+ · · ·
)

π

+ψ†
(

i∂t −m+
�
2m

+
�2

8m3 + · · ·
)
ψ

+ψ†
(
d+(π†π) +

1
2
d−[π†,π]

)
ψ

+c0(ψTPaψ)†(ψTPaψ) + c1(ψTPiψ)†(ψTPiψ)

+f0(ψTPiψ)†(ψTPiψ)π†
−π− + · · · , (3.1)

where the ellipses stand for the omitted three-body terms,
as well as for the higher-order terms in the derivative ex-
pansion. The non-relativistic pion and nucleon fields are
defined as π = (π1, π2, π3), where

√
2π± = π1 ∓ iπ2,

π0 = π3 and ψ =

(
p

n

)
. Further, Pa and Pi denote the

projection operators onto the 1S0 and 3S1 states, respec-
tively:

Pa =
1√
8
τ2τaσ2 , Pi =

1√
8
σ2σiτ2 , (3.2)

where σ and τ are the Pauli matrices in the spin and
isospin space, respectively. Note that we have not intro-
duced an elementary deuteron field in the Lagrangian. In
our approach, the deuteron emerges as a bound-state pole
in the Green functions after the non-perturbative resum-
mation of the lowest-order four-nucleon vertex.

In the above Lagrangian, d±, c0,1, f0 stand for the ef-
fective low-energy couplings. These should be determined
from matching of the various observables. Using dimen-
sional regularization for calculating the loops enormously
simplifies these calculations: as it is well known, all two-
particle bubbles vanish at threshold and the results of the
tree-level matching in the two-particle sectors remain in-
tact. For example, the constants d± are related to the πN

1 And vice versa, one may treat the HP EFT, as the system-
atic field-theoretical realization of the counting γ � Mπ �
4πFπ, which is heuristically implemented in the “modified
power counting” of [20].
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scattering lengths through

a± =
mMπ

2π(m+Mπ)
d± , (3.3)

and this relation remains unaffected by loop corrections.
As concerning the constant c1, we find it more conve-
nient to perform the matching in the 3S1 channel for the
deuteron binding energy, and not for the scattering length
in the np system. The difference between these two meth-
ods shows up at higher orders.

3.2 The deuteron

In the two-nucleon sector of the HP EFT, there is no trace
of pion–nucleon interactions: NN scattering is described
completely in terms of contact four-nucleon interactions.
The only possible loop diagrams are the s-channel bubbles
containing the vertices with the couplings c0,1. At higher
orders, one should also include the derivative four-nucleon
vertices.

Consider the following connected four-point function
in D dimensions:

(2π)DδD(p1 + p2 − q1 − q2)GN (P ; p, q)

=i4
∫

dDx1dDx2dDy1dDy2 eip1x1+ip2x2−iq1y1−iq2y2

×〈0|Tψ(x1)ψ(x2)ψ†(y1)ψ†(y2)|0〉c , (3.4)

where all spin and isospin indices have been suppressed,
and the CM and relative momenta are defined as

P = p1 + p2 = q1 + q2 ,

p =
1
2
(p1 − p2) , q =

1
2
(q1 − q2) . (3.5)

The center-of-mass (CM) frame corresponds to Pµ =
(P 0,0), and D → 4 in physical space.

At the energy P 0 → P 0
B(P ) = Md + P 2/2Md, the

four-point function (3.4) develops a bound-state pole cor-
responding to the deuteron

GN (P ; p, q) → −i
3∑

i=1

Ψi(p)Ψ
†
i (q)

P 0
B(P ) − P 0 + regular terms ,

(3.6)

where the deuteron wave function is defined as

Ψi(p) =
∫

dDxeipx〈0|Tψ
(x

2

)
ψ
(
−x

2

)
|B, i〉 , (3.7)

Ψ †
i (q) =

∫
dDye−iqy〈B, i|Tψ†

(y
2

)
ψ†
(
−y

2

)
|0〉 ,

and the sum in (3.6) runs over the polarizations of the
deuteron spin.

On the other hand, one may evaluate the four-point
function (3.4) with the use of the Lagrangian (3.1) that
amounts to the resummation of the geometrical series cor-
responding to the s-channel bubbles with four-nucleon

vertices. Further, since at the leading order the deuteron
is a purely 3S1 state, we may put c0 = 0 in order to get
the deuteron pole. As the result of this resummation, one
gets

GN (P ; p, q) =
3∑

i=1

2P †
i

(w(p1) − p0
1)(w(p2) − p0

2)

× ic1
1 − c1J(P 0,P )

2Pi

(w(q1) − q01)(w(q2) − q02)
+ terms with c0 , (3.8)

where w(p) = m+ p2/2m, and

J(P 0,P )

=
∫

dDl

(2π)Di
1

(w(l) − l0)(w(P − l) − P 0 + l0)

=
m

d
2 Γ (1 − d/2)

(4π)
d
2

(
2m− P 0 +

P 2

4m
− i0

) d
2 −1

, (3.9)

with d = D− 1. In the CM frame P = 0 and the denomi-
nator in (3.8) develops a pole at P 0 = Md = 2m− ε. This
gives (in d dimensions)

1 − c1J(Md,0) = 0 , c1 =
(4π)

d
2 ε1− d

2

m
d
2 Γ (1 − d/2)

. (3.10)

Finally, in the CM frame the behavior of the Green func-
tion near the deuteron pole is given by

GN (P ; p, q) (3.11)

→
3∑

i=1

2P †
i

(w(p1) − p0
1)(w(p2) − p0

2)
iZ

Md − P 0

× 2Pi

(w(q1) − q01)(w(q2) − q02)
+ regular terms ,

where the deuteron wave function renormalization con-
stant is given by

Z =
(4π)

d
2 ε2− d

2

m
d
2 Γ (2 − d/2)

. (3.12)

3.3 Pion–deuteron scattering

The pion–deuteron scattering amplitude can be extracted
from the six-point connected Green function

(2π)DδD(p1 + p2 + p3 − q1 − q2 − q3)
×G(P,Q; p, q; p3, q3)

= i6
∫

dDx1dDx2dDx3dDy1dDy2dDy3

× eip1x1+ip2x2+ip3x3−iq1y1−iq2y2−iq3y3 (3.13)

× 〈0|Tψ(x1)ψ(x2)π−(x3)ψ†(y1)ψ†(y2)π
†
−(y3)|0〉c ,

where the CM and relative momenta of nucleon pairs
are again given by (3.5), and p3, q3 denote the pion mo-
menta. Near the mass shell P 0 → Md + P 2/2Md, Q0 →
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Md + Q2/2Md, the six-point function (3.13) develops the
double deuteron pole. Since we are interested only in the
threshold scattering amplitude, we may take from the be-
ginning P = Q = 0 and p3 = q3 = 0. Then, in the vicinity
of the pole, one has

G(P,Q; p, q; p3, q3) →
∑
i,j

iΨi(p)
Md − P 0 Gij

iΨ †
j (q)

Md −Q0

+ regular terms , (3.14)

with

(2π)DδD(P + p3 −Q− q3)Gij (3.15)

= i2
∫

dDx3dDy3eip3x3−iq3y3〈B, i|Tπ−(x3)π
†
−(y3)|B, j〉 .

The residue of the quantity Gij on the pion mass shell
yields the threshold πd scattering amplitude

lim
p0
3,q0

3→Mπ

2Mπ(Mπ − p0
3)(Mπ − q03)Gij = iδij Tπd . (3.16)

On the other hand, in the theory with the Lagrangian (3.1)
the six-point Green function for vanishing three-momenta
can be given in the following form:

G(P,Q; p, q; p3, q3) =
2P †

i

(m− p0
1)(m− p0

2)(Mπ − p0
3)

× i(2π)DδD(P + p3 −Q− q3)Rij(P,Q; p3, q3)
(1 − c1J(Md,0))2

× 2Pj

(m− q01)(m− q02)(Mπ − q03)
+G1 . (3.17)

The quantity R in (3.17) corresponds to the “truncated”
Green function, and the factor (1−c1J(Md,0))−2 emerges
after the resummation of the NN bubbles in the 3S1 state
before the first and after the last interaction of the pion
with one of the nucleons (see Fig. 2). Finally, G1 denotes
the sum of all diagrams in which the virtual scattering of
the pion on one of the nucleons occurs before (or after) all
NN interactions, or in which the first (or last) NN inter-
action happens in the 1S0 state (the corresponding vertex
is proportional to c0). This class of the diagrams does not
develop a double deuteron pole, and contributes only to
the regular part of the Green function. Consequently, from
the comparison of (3.17) to (3.14), (3.15) and (3.16) one
may read off the scattering amplitude at threshold:

δijTπd = NRij(P,Q; p3, q3)
∣∣∣∣
P 0=Q0=Md, p0

3=q0
3=Mπ

,(3.18)

Rij

Fig. 2. Definition of the “truncated” Green function Rij ,
(3.17). The solid and the dashed lines denote nucleons and
pions, respectively

l

P-l

l

Fig. 3. Leading-order contribution to the πd scattering length

where

N = c−2
1 2MπZ =

γd

(4π)
d
2

Γ (1 − d/2)
1 − d/2

2Mπ . (3.19)

Hence, the prescription for calculating the threshold πd
scattering amplitude is formulated as follows: in the con-
nected six-point Green function (3.13) omit all Feynman
diagrams, where the very first or very last interaction oc-
curs between the pion and nucleon, or between the NN -
pair in the 1S0 state. In the remaining diagrams, resum
all initial- and final-state NN bubbles and write the fi-
nal result in the form of (3.17); read off the quantity
Rij(P,Q; p3, q3); perform the mass-shell limit, let all three-
momenta vanish, multiply by the normalization factor N ,
given by (3.19), and get the threshold scattering ampli-
tude Tπd.

3.4 Leading order

At the lowest order in the expansion parameter x = γ/Mπ,
there is a single contribution to the quantity Rij defined
by (3.17), which is depicted in Fig. 3. At threshold, this
contribution equals

R
(0)
ij

∣∣∣∣
thr

= 4c21d+Tr(P †
i Pj)

×
∫

dDl

(2π)Di
1

(w(l) − l0)2
1

w(l) −Md + l0

=
c21d+m

3
2 ε−

1
2

4π
δij . (3.20)

Substituting this result into (3.18), using (2.5), (3.3) and
(3.19) and expanding Md = 2m + O(ε), at the leading
order we finally obtain

a
(0)
πd =

1 +Mπ/m

1 +Mπ/2m
2a+ +O(x) , (3.21)

which of course coincides with the well-known result. Here
we only wish to note that our result is valid at all orders
in the chiral expansion for the scattering length a+. On
the other hand, if one works in the Weinberg scheme, one
has to identify the contributions to the quantity a+ order
by order in the chiral expansion [20].

3.5 Next-to-leading order

Since the quantity a+ turns out to be very small, the cor-
rections exceed in magnitude the leading-order result. In
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the HP EFT, four diagrams depicted in Fig. 4 contribute
at next-to-leading order. At threshold, we get

R
(1)
ij = δijc

2
1(Ra +Rb +Rc +Rd) ,

Ra = 2(d2
+ − 2d2

−)
∫

dDl

(2π)Di
dDk

(2π)Di
1

w(l) − l0

× 1
(w(l) −Md + l0)(l0 − k0 −Md + (l − k)2/2Mπ)

× 1
(w(k) + k0)(w(k) −Md − k0)

,

Rb = 2(d2
+ + 2d2

−)
∫

dDl

(2π)Di
dDk

(2π)Di
1

w(l) − l0

× 1
(w(l) −Md + l0)2

× 1
(w(l − k) −Md −Mπ + l0 − k0)

× 1
Mπ + k0 + k2/2Mπ

,

Rc = 4d2
+

∫
dDl

(2π)Di
dDk

(2π)Di
dDq

(2π)Di
1

w(l) − l0

× 1
(w(l) −Md + l0)

× 1
(w(l − q) −Md −Mπ + l0 − q0)

× c1
1 − c1J(Md +Mπ + q0,−q)

1
Mπ + q0 + q2/2Mπ

× 1
w(k − q) −Md −Mπ + k0 − q0

× 1
(w(k) − k0)(w(k) −Md + k0)

,

Rd =
1
c21
f0 . (3.22)

Note that performing (formally) the limit Mπ/m → 0 in
the quantityRa, one gets 1/(l0−k0−Md+(l−k)2/2Mπ) →
2Mπ/(l−k)2. In this limit, it is possible to relate the quan-
tity Ra to the average of the operator 1/q2 between the
deuteron wave functions in the potential that corresponds
to the point-like interaction c1(ψTPiψ)†(ψTPiψ). In the
same normalization as in [20] one obtains

Ra → 2(d2
+ − 2d2

−)
2Mπ

Z

1
(2π)3

〈
1
q2

〉
w.f.

, (3.23)

and the standard expression for the double-scattering con-
tribution in the limit Mπ/m → 0 (see e.g. [20]) is repro-
duced.

The counting of the above diagrams proceeds as fol-
lows. According to (3.10), the coupling c1 counts like x−1,
and the couplings d± count like x0. Further, after inte-
grating over the time-like components l0, k0, q0, one may
rescale l → γl, k → γk, q → γq, with γ = O(x). Each
propagator of a pion or a nucleon counts as γ−2 ∼ x−2

and the “virtual deuteron propagator” c1/(1−c1J) counts

a b

c
d

f
0

Fig. 4. Next-to-leading order contributions to the πd scatter-
ing length, see (3.22): a the standard double-scattering con-
tribution, b rescattering on a single nucleon, c pion rescat-
tering on the infinite chain of the nucleon bubbles (“virtual
deuteron”, denoted by a thick dot-dashed line), d counterterm
contribution

as c1 ∼ x−1. With these counting rules, it is straightfor-
ward to ensure that Ra ∼ Rb ∼ Rc = O(x0) (modulo
logarithms). Furthermore, since the constant f0 cancels
the ultraviolet divergences in the diagrams 4a,b,c, it must
count at the same order in x. This fixes f0 = O(x−2).
Note also that the contributions proportional to the cou-
pling constant c0 (nnπ0 intermediate states) have been
dropped from Rc altogether at this order. This is related
to the orthogonality of the projectors Pi and Pa given in
(3.2).

The fact that the quantity Rc in (3.22) is proportional
to a2

+ simplifies the calculations considerably. Since a+ is
very small, we shall systematically neglect a2

+ in all expres-
sions, and thus assume Rc = 0. Evaluating the remaining
integrals in dimensional regularization and carrying out
the renormalization in a standard manner, we finally ar-
rive at the following expression for the πd scattering length
at the next-to-leading order:

a
(1)
πd = −m(1 +Mπ/m)2

π(1 +Mπ/2m)

× x a2
−

[
(xa − xb) ln

mε

µ2 + (Ja − Jb)
]

+
M4

π

4π2(1 +Mπ/2m)
x3 fr

0 (µ) +O(x2) , (3.24)

where fr
0 (µ) denotes the renormalized coupling constant:

f0 =
64π3(1 +Mπ/m)2

εM2
π

a2
− (xa − xb)λ+ fr

0 (µ) ,

λ =
µ2(D−4)

16π2

(
1

D − 4
− 1

2
(Γ ′(1) + ln 4π)

)
, (3.25)

and µ denotes the scale of dimensional regularization. Fur-
ther, xa,b, Ja,b denote the integrals over Feynman param-
eters which depend on the dimensionless variable Mπ/m
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and emerge from Ra,b. These integrals are evaluated in
Appendix B. Here, we only give their approximate values

xa = −1.2569, Ja = −1.1334,
xb = 0.5098, Jb = −0.3731 .

(3.26)

At present, the numerical value of the counterterm fr
0 (µ)

is not known. For this reason, one has to include this un-
known quantity completely in the theoretical error and to
estimate the uncertainty that emerges already at next-to-
leading order. Most easily, this can be done by using the
renormalization group equation for the scale dependence
of fr

0 (µ), which at this order reads

µ
d
dµ

fr
0 (µ) = −8π(1 +Mπ/m)2

εM2
π

a2
−(xa − xb) . (3.27)

We use the following procedure to estimate the uncer-
tainty. Since the hard scale of the theory is of order of
Mπ, we may set fr

0 (µ) = 0 at some scale µ � Mπ and
study the µ-dependence of the plot in the (a+, a−)-plane,
which emerges from (3.24) at a given (experimental) value
of aπd. This plot is given in Fig. 5. Varying µ in a “reason-
able” range, we may thus visualize the error that is caused
by the scale dependence. Here, we wish to note that the
scale dependence is of course not the only possible source
of theoretical uncertainty in general. In order to have a
reliable estimate of the error (in the case of the weak scale
dependence) one has, in addition, to use dimensional ar-
guments to estimate the size of the LECs. However, in
the case of a strong scale dependence, as in the example
considered here, additional arguments are not needed.

The results which are displayed in Fig. 5 are in a
qualitative agreement with the findings of [18,19]. Note
that these results are obtained at the next-to-leading or-
der in HP EFT. It is unlikely that taking into account
higher-order terms will reduce the uncertainty due to the
scale dependence. On the contrary, from the comparison
with e.g. (18) of [19], one may conclude that numeri-
cally the most important corrections due to the effective
range at this order amount to the multiplication of the
loops by the deuteron wave function renormalization fac-
tor Zd = (1 − γrd)−1 � 1.7, where rd = 1.765 fm is the
parameter related to the effective range in the 3S1 channel.
This effect leads to further amplification of the ambiguity
related to the scale dependence.

The interpretation of the results displayed in Fig. 5 is
unambiguous. The experimental data together with the
above theoretical analysis constrain the S-wave πN scat-
tering lengths within the band which – for large values
of µ – also intersects with the common area of two other
bands, obtained from the data on the pionic hydrogen en-
ergy shift and width. However, without having in advance
estimated the numerical value of f0, one cannot use the
measured value of aπd for a precise determination of the
scattering length a+, that was an original motivation for
studying the pion–deuteron system. Moreover, since the
constant f0 parameterizes the short-range physics, it can
be only fixed either by using other experimental data (dif-
ferent from the πd scattering process considered here) or
through the lattice simulations.
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-0.02

-0.01

0

0.01

Hydrogen shift [O(p3) ChPT]Hydrogen width
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Fig. 5. The constraints on the S-wave πN scattering lengths
a+ and a− from the pionic deuterium energy shift for differ-
ent values of the scale parameter µ. The central line is given
for µ = 146 MeV. The upper and lower bounds correspond to
µ = 250 MeV and µ = 100 MeV, respectively. In addition, we
display the constraints from the most recent measurement of
the pionic hydrogen shift and width [38]. The upper limit for
the width is measured in the 4p–1s transition in pionic hydro-
gen

We wish to add that, in order to be consistent with
power counting, the magnitude of the LEC fr

0 (µ) is para-
metrically enhanced by a factor 1/x2 � 10 as compared
to the dimensional estimate fr

0 (µ) = const/M5
π . Numer-

ically, substituting the dimensional estimate into (3.22),
one gets the uncertainty ∼ 3% in the quantity aπd, which
by far underestimates the actual uncertainty displayed in
Fig. 5.

3.6 Imaginary part

In the presence of the absorptive channels, the coupling
constant f0 is not real (note that in order to simplify the
notations, we have up to here always omitted the symbol
“Re” in this coupling constant, as well as in aπd and other
quantities, if this does not lead to the confusion). The
imaginary part of the πd scattering length is given by (cf.
with (3.22))

Im aπd =
µd

2π
Φ2

0 Im f0 , (3.28)

where Φ2
0 = γ3/2π denotes the square of the deuteron

wave function at the origin. Further, the imaginary part
of the constant f0 is directly related to the inelastic chan-
nels, which are “shielded” when constructing the HP EFT.
Since we have neglected all electromagnetic effects from
the beginning, the bulk contribution to Im f0 is provided
by the two-neutron intermediate state, whereas the con-
tribution from the γnn intermediate state is omitted. To
take this fact into account, we add the superscript “str” to
the pertinent scattering length. To get the imaginary part,
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which also includes the effect of the γnn state, one writes
Im aπd = Im astr

πd (1+1/Rγ), where the experimental value
of the quantity Rγ = 2.83, which stands for the ratio of
the cross-sections of the π−d transition into the nn and
γnn final states (the Panofsky ratio) and is treated at face
value. At the lowest order we get

Im f str
0 = π

∫
d3k1

(2π)3
d3k2

(2π)3
|T (pnπ− → nn)|2

× (2π)3δ4(p1 + p2 + p3 − q1 − q2), (3.29)

where T (pnπ− → nn) stands for the transition ma-
trix element for the process p(p1) + n(p2) + π−(p3) →
n(k1) + n(k2), and the above integral has to be evaluated
at threshold p1 = p2 = p3 → 0. After straightforward
calculation we get

Im f str
0 =

mp�

4π
|T (pnπ− → nn)|2 ,

|k1| = |k2| = p� =
√
mMπ + · · · , (3.30)

where the ellipses stand for the relativistic corrections.
Now we note that the above result is compatible with the
well-known relation in terms of the π−d → nn inelastic
cross-section at threshold:

Im astr
πd =

1
4π

lim
|p3|→0

|p3|σ(π−d → nn) , (3.31)

σ(π−d → nn) =
mµd p

�

2π|p3|
|T (π−d → nn)|2 ,

if the transition amplitudes for the processes π−d → nn
and pnπ− → nn are related by

T (π−d → nn) = Φ0 T (pnπ− → nn) . (3.32)

Equation (3.32) is nothing but the leading-order Deser
formula, which is obtained with the assumption that the
deuteron radius is much larger than the distances relevant
for the interactions in the πNN–NN system. The correc-
tions to this formula would then emerge at O(x) relative
to the leading-order result. Note also that (3.32) agrees
with the result of [13], obtained within the potential scat-
tering theory, that serves as a good check for the validity
of HP EFT.

4 Matching to ChPT and numerical analysis

4.1 Threshold amplitude in the HP EFT

As it was demonstrated in the previous section, within the
HP EFT it is not possible to get an accurate description
of the πd scattering length in terms of the S-wave πN
scattering length only. The relation between these quan-
tities contains a large unknown short-range contribution
(three-body force in the language of the potential scat-
tering theory), which is parameterized through the LEC
f0.

In this section we shall address the issue whether it is
possible to achieve an increased accuracy if one treats the
same problem within the Weinberg approach [14,20]. In
the HP EFT (which is the effective theory of ChPT in the
Weinberg picture for the momenta p 	 Mπ), the LECs
(including f0) receive contributions from two different mo-
mentum regions: Mπ < p < Λ and p > Λ (here Λ � 4πFπ

denotes the cutoff mass used in the Weinberg formulation,
which is of the order of the hard scale in ChPT). In the
Weinberg framework, one has “resolved” the momenta at
the scales Mπ < p < Λ. The unknown dynamics at the
momenta p > Λ is parameterized by new LECs which are
now defined at the scale Λ instead of Mπ. On dimensional
grounds, the natural size of these new LECs must be much
smaller than the size of old LECs, since Mπ 	 Λ. Stated
differently, if we start from the LECs in the theory at a
scale Λ and calculate the LECs of the HP EFT in the
limit of a large Mπ, we must see that the LECs of the
HP EFT must be enhanced by the pion loops where the
loop momentum runs within Mπ < p < Λ. It is natural to
assume that this momentum region contributes the bulk
of the total magnitude of the LEC in question. Could one
then separate the large but potentially calculable pion ex-
change contribution to f0 from the unknown short-range
contribution at a scale Λ?

A natural choice of the S-matrix element in the scat-
tering sector, which can be used to determine the con-
stant f0 through the matching procedure to the Weinberg
framework, is that of the elastic process π−(pn)3S1 →
π−(pn)3S1 . The matching condition has the form

TW (p1p2p3; q1q2q3) (4.1)

=
3∏

i=1

[2Ei(pi)]
1/2[2Ei(qi)]

1/2T (p1p2p3; q1q2q3) ,

where T and TW denote pertinent scattering matrix ele-
ments in the HP EFT and in ChPT, respectively. Further,

Ei(l) =
√
m2 + l2, i = 1, 2 and E3(l) =

√
M2

π + l2 are
the relativistic energies of a nucleon and a pion. Note that
the kinematical factor in (4.1) is introduced in order to
take into account the different normalization of the one-
particle states in HP EFT and in the Weinberg approach.

We found it convenient to perform matching for the
one-particle irreducible (1PI) matrix elements separately
in two- and three-particle subsystems (with respect to
the non-relativistic pion and nucleon propagators). In the
three-particle sector, the scattering amplitude turns out
to be singular at threshold: one has to choose the partic-
ular kinematics in order to approach the zero-momentum
limit. A possible choice of the external momenta is given
by

p = q = 0, p3 = −P , q3 = −Q, P = −Q → 0, (4.2)

where the definition of the CM and the relative momenta
is given in (3.5).

Below, we schematically describe the matching for the
above scattering matrix element. Explicit expressions will
not be used in the discussion. For our purposes, we only
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need to demonstrate that such a matching can be per-
formed in principle.

We start with the evaluation of the scattering ampli-
tude T that enters the right-hand side of (4.1). This quan-
tity receives many contributions (some of them are de-
picted in Fig. 6). Out of these contributions, the diagrams
6a and 6c1 are one-particle reducible and will be excluded
from matching. Some of the contributions are singular at
threshold. For example, the diagram in Fig. 6e2 contains
the factor |P |−1, and the diagrams in Fig. 6e3,e4 are loga-
rithmically singular at small momenta. The three-particle
threshold scattering amplitude A(µ), by definition, is ob-
tained from the 1PI matrix element, by subtracting first
all singular contributions at |P | → 0. Namely, in the vicin-
ity of threshold, the sum of the 1PI diagrams shown in
Fig. 6 has the form

T (1PI) =
T−1

|P | + T0 ln
|P |
µ

+ A(µ) +O(|P |) , (4.3)

where the arbitrary scale that enters the logarithm is set
equal to the scale of dimensional regularization µ, for sim-
plicity. Further, the quantity A(µ) = fr

0 (µ) + A(µ) con-
tains additive contribution from the LEC fr

0 (µ), which
emerges in the diagram Fig. 6b. Note that the corrections
to this contribution due to the initial- and finite-state in-
teractions vanish in HP EFT. Here, A(µ) stands for a sum
of all diagrams that do not contain fr

0 (µ); see Fig. 6. At
the order we are working, this quantity depends only on
the couplings in the two-particle sector d±, c1, as well as
the masses Mπ, m.

The power counting in the expansion parameter x is
organized as follows. One groups the diagrams shown in
Fig. 6, according to the number (dN ) of virtual NN inter-
actions – “squeezing” all deuteron propagators to a single
point. For example, the 1PI diagrams c2 and (c3) corre-
spond to dN = 0, d1 and d2 to dN = 1, e1, e2, e3 and e4
to dN = 2, f1 to dN = 3, and g1 to dN = 4, etc.

For illustration, let us first consider the 1PI diagrams
with dN = 0. The contribution to the threshold amplitude,
which is obtained after subtracting all singular pieces from
these diagrams, is proportional to powers of the πN cou-
pling constants d± and depends on the masses Mπ, m and
the scale µ. Neither of these quantities scale with x and
thus this contribution emerges at O(1).

Next, we consider the diagrams with dN = 1. The di-
agram d1 is proportional to c1d2

± = O(x−1). In addition,
there is an intrinsic scale x present in the deuteron prop-
agator (1 − c1J)−1, since c1 = O(x−1). In order to get rid
of this scale, one has to first perform the contour integra-
tion over the time-component of the loop momentum k0

and afterwards rescale the loop three-momentum k → xk,
as well as all external three-momenta. Further, after sub-
tracting all singular pieces at threshold, one may put the
external momenta to zero. The counting of the powers of
x proceeds as follows. The integration measure d3k yields
the factor x3. Since the integration over k0 reduces the
total number of elementary (pion and nucleon) propaga-
tors from three to two and since each elementary propa-
gator counts like x−2, this leads to the factor x−4 after

a

f
0

+ + + ...

b

c1 c2 c3

+

+

e1

+

e2

+

e3 e4

+ ...

+ ...

f1

+ ...

g1

+ ...

d1 d2

Fig. 6. Lowest-order diagrams contributing to the threshold
scattering amplitude for the process π−(pn)3S1 → π−(pn)3S1 .
The solid, dashed and dot-dashed lines correspond to nucle-
ons, to pions and to the deuteron (an infinite sum of nucleon
bubbles), respectively. All diagrams except (a) and (c1) are
one-particle irreducible

rescaling the momenta. Finally, taking into account the
fact that after rescaling the deuteron propagator counts
like O(1) and putting together all factors, we arrive at the
conclusion that the diagram d1 counts like x−2 (modulo
logarithms). By using the same method, it is easy to show
that the diagram d2 contributes at O(x−1).

Applying the same argument to all diagrams in Fig. 6,
we finally come to the conclusion that the leading-order
scaling of the loop diagrams is that at O(x−2). Only the
diagrams d1, e1, e3, e4 and f1 contribute at the leading or-
der in x. All other diagrams, as well as the diagrams which
can be obtained from the diagrams displayed in Fig. 6 by
attaching more pion and/or nucleon loops, contribute at
a higher order in x.

Finally one has to consider the LEC fr
0 (µ) which, as

we know, scales at O(x−2) at leading order. Generally, one
can write

fr
0 (µ) = F−2x

−2 + F−1x
−1 + F0 + F1x+ · · · ,

Fi = Fi(Mπ,m, µ) , (4.4)

where only the leading coefficient F−2 contributes in the
pion–deuteron scattering length at O(x).

To summarize, the right-hand side of (4.1) can be writ-
ten as a sum of the terms that scale as xn with n =
−2,−1, 0, · · · . The leading-order contribution at O(x−2)
emerges from the diagrams b, d1, e1, e3, e4 and f1. Ex-
cept the LEC f0 that enters from diagram b, all other
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Fig. 7. Lowest-order contribution to
the threshold amplitude of the process
π−pn → π−pn in ChPT. The solid and
dashed lines denote nucleons and pions,
respectively

diagrams are expressed in terms of the parameters deter-
mined in the two-particle sector.

4.2 Weinberg–Tomozawa term

Next, we consider the evaluation of the left-hand side
of (4.1). The lowest-order contribution in ChPT in the
Weinberg framework emerges from the diagram depicted
in Fig. 7. This diagram describes the double scattering of
the pion on the nucleons, with the vertices obtained from
Weinberg–Tomozawa Lagrangian

L =
i

2
√

2F 2
(4.5)

×
{
(π+∂µπ

0 − π0∂µπ
+)p̄γµn

+(π−∂µπ
0 − π0∂µπ

−)n̄γµp
}

+
i

4F 2 (π−∂µπ
+ − π+∂µπ

−)
{
p̄γµp− n̄γµn

}
,

where one has used the Condon–Shortley convention for
the component fields and F stands for the pion decay
constant in the chiral limit. At the order of accuracy we
are working, we may take F = Fπ = 92.4 MeV. The
scattering amplitude for the process p(q1)n(q2)π−(q3) →
p(p1)n(p2)π−(p3) at second order in perturbation theory
is given by

TW = − 1
4F 4

ū(p1) 
q3u(q1) ū(p2) 
p3u(q2)
M2

π − (p1 − q1 − q3)2

− 1
4F 4

ū(p1) 
p3u(q1) ū(p2) 
q3u(q2)
M2

π − (p1 − q1 + p3)2

+
1

2F 4

ū(p1) 
p3u(q2) ū(p2) 
q3u(q1)
M2

π − (p1 − q2 + p3)2
. (4.6)

The low-energy reduction of the relativistic amplitude
(4.6) yields both the reducible and irreducible parts. In
order to single out the 1PI piece, one has to split the rel-
ativistic pion propagator into the positive- and negative-
energy components and expand the result for small three-
momenta. For example,

1
M2

π − (p1 − q1 − q3)2

=
1

2Mπ

1
Mπ − q01 − q03 + p0

1 + (q1 + q3 − p1)2/2Mπ

+ · · · +
1

4M2
π

+ · · · , (4.7)

where the first (the second) term correspond to the one-
particle reducible (irreducible) pieces. Evaluating the 1PI
part at threshold, we get

T
(1PI)
W = − m2

2F 4 (χ†
1χ1 χ

†
2χ2 − χ†

1χ2 χ
†
2χ1) , (4.8)

where the Pauli spinors are defined through
√

2m

(
χi

0

)
=

limqi→0 u(qi) and
√

2m (χ†
i , 0) = limpi→0 ū(pi). Perform-

ing a Fierz transformation, we get

T
(1PI)
W = −2m2

3F 4 (χPiχ)†(χPiχ) , χ =

(
χ1

χ2

)
. (4.9)

Finally, dividing the amplitude TW by a kinematical fac-
tor (2m)22Mπ that emerges from (4.1) at threshold, one
may read off the value of the LEC f0, which is obtained
through the matching to ChPT at the leading order in
chiral expansion:

f0 = − 1
12F 4Mπ

+ · · · . (4.10)

Substituting now this value into (3.22), one ends up with
the tiny contribution −0.0004 M−1

π (cf. with the current
experimental value aπd = 0.0261 M−1

π ). The small mag-
nitude for this correction is in agreement with findings of
[14]. The reason why the leading-order chiral contribution
is so small is simple: it emerges only at the NNLO in the x
counting and is contained in the term F0 of (4.4). To the
contrary, some of the subleading contributions in ChPT,
which are contained in the LO and NLO coefficients F−2,
F−1, get enhanced by inverse powers of x and are numeri-
cally much larger that the Weinberg–Tomozawa term. The
above example clearly shows that the power countings in
the HP EFT and in the Weinberg picture are not corre-
lated. In accordance with the findings of [20], the count-
ing which is based on the expansion parameter x better
reflects the numerical size of the contributions emerging
at different orders.

4.3 Initial- and final-state interactions

From the discussion in the previous section one concludes
that one needs to identify a subclass of the diagrams in
the Weinberg approach which – after the matching – con-
tributes at O(x−2) to the LEC f0. Since here we are
only interested in establishing accuracy limits in the cal-
culations of the pion–deuteron scattering length, in the
matching condition we may neglect loop diagrams shown
in Fig. 6 and their counterparts in ChPT. Since these dia-
grams depend only on the parameters that can be deter-
mined in the two-particle sector, including these diagrams
will only shift the central value of f0 determined through
matching, without significantly affecting the error bars.

The contributions which one needs to retain in the left-
hand side of the matching condition (4.1), contain the gen-
uine three-particle ChPT LEC(s) f ′

0, which are the coun-
terpart(s) of the LEC f0 in HP EFT. Note that due to
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chiral symmetry, the LECs in the Weinberg framework ap-
pear first at O(p2) – the corresponding Lagrangian should
contain either two derivatives of the pion field or the quark
mass matrix. Further, these LECs do not come alone: in
the spirit of the Weinberg approach, one has in addition to
consider summing up the diagrams that correspond to the
initial- and final-state interactions of pions and nucleons.
Due to the use of the cutoff in the Weinberg approach,
this effect does not vanish at threshold, in difference to
HP EFT.

In the following, we shall first provide a very crude
estimate of the initial- and final-state interaction effect.
We assume that the bulk of the effect in the three-particle
system comes from the NN -pair, whereas the “hopping”
of the pion on the nucleon lines amounts to a small cor-
rection. We further approximate the one-pion exchange in
the Weinberg picture by a local NN potential with a cou-
pling denoted by c′1, assuming a cutoff between the pion
mass Mπ and the hard scale Λ in the loops, wherever this
vertex is present. With these assumptions, the matching
condition takes the form that is schematically shown in
Fig. 8 (in this figure, the ellipses stand for the diagrams
which do not contain three-particle LECs). One may in-
troduce the “amplification factor” which is obtained by
summing up all bubbles in the ingoing and outgoing NN
lines:

R2 =
1

(1 − c′1(Λ)JΛ(0))2
,

JΛ(|p|) =
∫ Λ d3l

(2π)3
m

l2 − p2 − i0

=
mΛ

2π2 + i
m|p|
4π

+O(Λ−1) , (4.11)

where we have made explicit the Λ-dependence of the cou-
pling constant in the Weinberg scheme.

Imposing now the condition that the denominator has
a pole at the deuteron binding energy |p| = iγ, one can de-
termine the coupling constant c′1(Λ) and the amplification
factor:

(c′1(Λ))−1 = −mΛ

2π2 +
mγ

4π
+ · · · ,

R2 =
(

1 − 2Λ
πγ

)2

+ · · · ≈ 4Λ2

π2mε
+ · · · , (4.12)

and the matching gives

f0 = R2f ′
0 + · · · = r2x−2f ′

0 + · · · , (4.13)

where r2 does not scale with x. Hence, the desired scale
behavior in the constant f0 emerges from the subclass of

... ...
R Rf’

0 0
f

+..=

Fig. 8. Including the initial- and final-state interactions in the
Weinberg picture

the diagrams in the Weinberg picture which describe NN
rescattering in the initial and final states in all orders.

The numerical value of the amplification factor R2

turns out to be very large: R2 � 4 for Λ = Mπ, R2 �
50 for Λ = 500 MeV and R2 � 200 for Λ = 1 GeV. Per-
forming now a standard dimensional analysis of the LECs
in ChPT (see e.g. [39]), we get the estimate of the uncer-
tainty in the quantity f0,

∆f0 =
1

2Mπ
R2∆f ′

0 =
1

2F 4
πMπ

(
Mπ

4πFπ

)2

R2 . (4.14)

Substituting this result into (3.22), one finally gets

∆aπd/aπd = [0.5%; 6%; 23%]
for Λ = [Mπ; 500 MeV; 1 GeV] . (4.15)

Now we present the exact numerical results in the Wein-
berg picture which confirm the validity of our crude es-
timate. Note that, if the calculations are done in the
Weinberg approach ab initio, the amplification factor is
contained in the quantity |Φ̃0(Λ)|2, where Φ̃0(Λ) denotes
the value of the wave function at the origin. The coun-
terpart of this quantity in HP EFT is given by Φ0 =
(γ3/2π)

1
2 = 0.0445 fm− 3

2 . For comparison, the NNLO
wave functions in the Weinberg approach are given by
Φ̃0(Λ) = [0.487; 0.434] fm− 3

2 for Λ = [450; 650] MeV2.
Hence, one gets the following estimate for the amplifica-
tion factor: R2 = Φ̃0(Λ)2/Φ2

0 � 100, which in turn cor-
responds to the reasonable value of the cutoff mass of
Λ � 720 MeV in our order-of-magnitude estimate in (4.15)
and to ∆aπd/aπd � 12%, which qualitatively agrees with
the large uncertainty in Fig. 5. Note that the NN interac-
tions are now studied up to and including N3LO [40]. In
our estimates we however use the NNLO wave functions,
in order to consistently compare with earlier work on the
subject [20].

The LEC f0 that enters the expression of the pion–
deuteron scattering length, can be estimated by using res-
onance saturation. The details of this procedure can be
found in Appendix C. It turns out that using the set of
parameters determined in [41] leads to the result which
is consistent with the above dimensional estimate. How-
ever, due to the large uncertainty in the values of these
parameters, the resonance saturation hypothesis cannot
be used – at the present stage – to get a better accuracy
in the calculation of aπd. To this end, one has to improve
the quality of the fit of the parameters of the resonance
Lagrangian to the data.

How can this large uncertainty be reconciled with the
mild cutoff dependence of [20]? The answer to this ques-
tion is the following. Assuming for instance that the cutoff
dependence of the generic LEC(s) f ′

0 in ChPT at the low-
est order is logarithmic, we may split these LEC(s) into
a term which depends on the cutoff mass Λ and a term
which does not:

f ′
0 = A+B ln

Λ

Λ∗ , (4.16)

2 We thank H. Krebs for providing us with these values.
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where Λ∗ stands for a some characteristic hard scale (typ-
ically ∼ 1 GeV). The mild cutoff dependence is equivalent
to the statement that the constant B is small. One may
argue that the smallness of B is related to the dominance
of the one-pion exchange which at the large distances has a
softer behavior than the contact four-fermion vertex which
is used in HP EFT to describe the deuteron. However, the
constant A is not covered by the above argument. Using
the dimensional arguments, we see that the bulk of the un-
certainty ∼ 12% should come from the scale-independent
constant A.

5 Comparison to the existing approaches

The issue of the pion–deuteron scattering has obtained
an extensive coverage in the literature during the last
decades. A highly incomplete list of references is given in
[5–13]; see also references therein. Note that the frame-
work used in HP EFT is in fact very close to that of
the potential scattering theory. Consequently, a rapid con-
vergence of the series for aπd in HP EFT would indi-
cate also on the applicability of the potential picture in
the πd scattering at threshold. The main question re-
lated to the choice of the potential remains however open.
As was demonstrated in [42], the conventional quantum-
mechanical potentials can be interpreted as a mere reg-
ularization of the non-relativistic effective field theories.
From this point of view, the scale dependence which was
discovered in this article is equivalent to the off-shell ef-
fects in the two-body potentials which must be canceled
by the corresponding three-body force (analog of the LEC
f0). It is clear that fitting two-body potentials to the
scattering data cannot completely eliminate this inherent
off-shell (scale) dependence. Another aspect of the prob-
lem concerns the absence of the relation to QCD and to
ChPT. One may conclude that the existing potential mod-
els which are used to extract πN scattering lengths from
the measured πd scattering length cannot in principle pro-
vide enough accuracy needed for the test of the predictions
of QCD at low energy in the πN sector.

Next, we shall consider the “hybrid” approach in nu-
clear physics, which is based on the calculation in ChPT of
a certain set of Feynman diagrams, corresponding to the
“irreducible transition kernel” and finally sandwiching the
result by “realistic” wave functions which are calculated,
using the Paris, Bonn, Argonne, . . . potentials (see e.g.
[12,14,16]). As we already mentioned above, this proce-
dure can be justified, if and only if the long-range effects
(e.g. the one-pion exchange) dominate the transition oper-
ator. However, as we have seen, the situation in describing
πd scattering length is just the opposite: this quantity re-
ceives a large short-distance contribution from the LEC
f0, which should be there in order to provide a scale inde-
pendence of the final result. In the final expression for the
decay width, this constant is multiplied by the wave func-
tion of the deuteron at the origin squared. Consequently,
for the consistency of the hybrid approach, one must be
sure that the value of the “realistic” wave function at the

origin is a good approximation of the same quantity, ob-
tained in the effective theory which was previously used
to calculate the transition kernel.

A fully consistent approach to the pion–deuteron scat-
tering problem is provided by the effective field theories,
in which the wave function of the deuteron is evaluated
within the same setting as the diagrams, describing the
irreducible kernel. These are e.g. the calculations carried
out within the framework with perturbative pions [18], HP
EFT with elementary deuteron field [19], or in the Wein-
berg scheme [17,20]. The large scale dependence in the
LECs, analogous to our f0, was first reported in [18]. The
Feynman diagram which leads to such a large dependence
is the counterpart of our Fig. 4a. One should however note
that treating the pions relativistically and using the chiral
Lagrangians unnecessarily complicates the simple physi-
cal picture, since the question about the convergence of
ChPT expansion naturally arises. A more straightforward
approach is provided by HP EFT [19]. The authors of
this article also find the logarithmic enhancement of the
diagram 4a, as well as the large scale dependence which
emerges due to this diagram. Note however, that in this
paper not all terms at O(x) have taken into account: The
diagrams shown in Fig. 4b,c are omitted – although, as
we have seen, the inclusion of these diagrams does not
change the qualitative conclusions. In the present paper,
we have also critically re-examined the conjecture made in
[19], concerning the possibility of calculation of the LEC
f0 with an improved accuracy in the Weinberg picture –
this, as was shown, is not possible.

Finally, we briefly comment on the papers [17,20],
which provide the systematic treatment of the πd scat-
tering problem within the Weinberg framework. The re-
sults of these papers are now very easy to understand and
the relation to the HP EFT becomes crystal clear. Thus,
the puzzle concerning the (seeming) differences between
the HP EFT and the Weinberg approach has finally been
resolved.

6 Conclusions

(i) In this paper, we systematically investigate pionic deu-
terium within the framework of effective field theories.
The whole treatment naturally falls into several steps. At
the first step, we discuss the extraction of the πd scatter-
ing length from the 3p–1s transition energy and width in
the pionic deuterium. The next-to-leading order result has
been obtained for the level energies, which can be used
for an accurate determination of the πd threshold scat-
tering amplitude from experimental measurements. Since
the isospin-breaking corrections in this amplitude are not
expected to be relevant, given the relatively large theoret-
ical uncertainty in connecting aπd with the πN scattering
lengths, these corrections have been neglected for the time
being.
(ii) The main focus in the present paper is on investi-
gating the possibility to relate aπd to the πN scattering
lengths and on the analysis of the systematic theoreti-
cal error in such a procedure. We give a consistent treat-
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ment of the problem within the framework of HP EFT,
where the expansion parameter is given by the quantity
x = γ/Mπ � 1/3, where γ � 45 MeV is the characteris-
tic bound-state momentum in the deuteron. In this paper,
we have evaluated contributions to the quantity aπd, up
to and including O(x) that corresponds to the next-to-
leading order in HP EFT.
(iii) At next-to-leading order, the πd scattering length
receives a contribution from the (unknown) LEC which
we denote as f0. We have used the scale dependence of
this contribution for estimating the theoretical error in
our calculations. This scale dependence is shown in Fig. 5.
The scale must be chosen to be of order of the pion
mass, but is otherwise arbitrary. In our opinion, the range
100 MeV < µ < 250 MeV can be roughly considered as a
“natural” choice of this scale. It should be also taken into
account that the plot in this figure, which corresponds to
the recent experimental measurements of the pionic hydro-
gen decay width, still does not include the isospin-breaking
corrections from ChPT [28,43]. As we see from Fig. 5, the
theoretical uncertainty due to the unknown LEC f0 is
rather large.
(iv) In this paper, we have investigated in detail the differ-
ences between the Weinberg approach and the HP EFT.
It was shown that, despite the very mild cutoff depen-
dence in the Weinberg approach, the uncertainty due to
the unknown LECs is significant and is of the same order
of magnitude as in the HP EFT. The reason for this is that
the large initial- and final-state NN interactions lead to
an amplification of the initially small LEC contribution.
Taking into account this amplification, the theoretical pre-
dictions within both approaches are essentially the same.
(v) Our main conclusion, concerning the accuracy limits
in the extraction of the πN scattering lengths from the
pion–deuteron data, can be formulated as follows: by far
the largest source of uncertainty is the low-energy con-
stant f0, which is the genuine short-distance three-body
contribution and should be either determined by other ex-
periments or should be obtained by lattice simulations. In
particular, one might attempt to get at least the order-of-
magnitude estimate from the process NN → NNππ or
from the pion–nucleus optical potential, in case of non-
equal proton and neutron densities, where f0 should be
present apart from the “conventional” terms as given in
e.g. [44]. Neither of these methods seems easy to be ap-
plied. But, without having fixed the value of f0 at a suf-
ficient precision, it is impossible to improve the accuracy
of the prediction of the pion–deuteron scattering length.
(vi) In our opinion, it is feasible to estimate f0 by us-
ing the resonance saturation hypothesis (see Appendix C).
At present, however, the parameters of the resonance La-
grangian are not known at a sufficient precision, and more
effort is needed to pin them down accurately from the ex-
perimental data.
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Appendix A: Calculation of the energy shift
of pionic deuterium
by using non-relativistic Lagrangians

In this appendix, we shall present the calculation of the
energy of the levels of the pionic deuterium, characterized
by the quantum numbers nlj. The calculations will be
performed up to and including next-to-leading order in the
isospin-breaking parameters α and md −mu. Since similar
calculations for other hadronic bound states have been
already considered in the literature in great detail (see e.g.
[23–29]), we shall not repeat them here and display only
the most important results. For convenience, the energy
of the generic level can be split into the “electromagnetic”
and “strong” parts:

Enlj = EC
n +∆Eem

nlj +∆Estr
nlj + o(α4, α3(md −mu)) ,

EC
n = − 1

2n2 α
2µd , (A.1)

where EC
n stands for the non-relativistic Coulomb binding

energy.
The contributions to the “electromagnetic” part of the

potential are depicted in Fig. 9. These include: the rela-
tivistic insertions p4/8M3

π , p4/8M3
d in the pion and de-

uteron lines, respectively; the (Coulomb and transverse)
one-photon exchange between the pion and the deuteron;
the vacuum polarization contribution. At the end of the
day, the explicit expression for the potential at this order
can be written as

V em
ab (p, q) = (2π)3δ3(q − p)δab

(
p4

8M3
π

+
p4

8M3
d

)

+J0
ab(p, q)

1
k2 j

0(p, q)

+Jα
ab(p, q)

1
k2

(
δαβ − kαkβ

k2

)
jβ(p, q)

+δabV
vac(p, q) , (A.2)

where k = p − q and a, b = 1, 2, 3 denote the polarization
projection of the deuteron. Further, V vac stands for the
vacuum polarization contribution, and Jµ

ab and jµ, where
µ = 0, α, denote the electromagnetic formfactors of the
deuteron and the pion, respectively. At the order of accu-
racy we are working, one may use the following expression
for these formfactors:

J0
ab(p, q)

= e

{
δab

(
1 − 1

6
〈
r2d
〉
k2
)

+
µQ

2

(
kakb − 1

3
k2δab

)

+
1

4M2
d

(Qakb − kaQb)(1 − µ̄M )
}

+O

(
1
M3

d

)
,

Jα
ab(p, q)

=
e

2Md
{Qαδab + µ̄M (δα

a kb − kaδ
α
b )} +O

(
1
M2

d

)
,

j0(p, q) = −e
(

1 − 1
6
〈
r2π
〉
k2
)

+O

(
1
M3

π

)
,
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a b c d

Fig. 9. The contributions to the elec-
tromagnetic energy of the pionic deu-
terium: a relativistic insertions; b one
Coulomb photon exchange; c one trans-
verse photon exchange (shaded squares
denote pion and deuteron electromag-
netic formfactors); d vacuum polariza-
tion

jα(p, q) = − e

2Mπ
Qα +O

(
1
M2

π

)
, (A.3)

where Q = p + q, and µQ = 0.2859 fm2, µM = e
2Md

µ̄M =
0.85741 e

2m are the deuteron quadrupole and magnetic mo-
ments, respectively. Substituting these relations in (A.2),
we finally obtain

V em
ab (p, q) = − e2

k2 δab + δV em
ab (p, q) ,

δV em
ab (p, q) = (2π)3δ3(q − p)δab

(
p4

8M3
π

+
p4

8M3
d

)

− e

k2

{
−k2

6
δab

(〈
r2d
〉

+
〈
r2π
〉)

+
1

4MdMπ

(
Q2 − (Q · k)2

k2

)
δab

+
µQ

2

(
kakb − 1

3
k2δab

)

+
(

1 − µ̄M

4M2
d

+
µ̄M

2MdMπ

)
(Qakb − kaQb)

}
+ δabV

vac(p, q) . (A.4)

The electromagnetic energy shift at next-to-leading order
is given by

∆Eem
nlj =

∑
σρ=±,0

∫
d3p

(2π)3
d3q

(2π)3
〈jν|l(ν − σ)1σ〉

× 〈jν|l(ν − ρ)1ρ〉Y ∗
l(ν−σ)(p)χ∗

a(σ)Ψ∗
nl(|p|)

× δV em
ab (p, q)Ψnl(|q|)χb(ρ)Yl(ν−ρ)(q) , (A.5)

where Ylν and 〈jm|l(m−σ)1σ〉 are the spherical functions
and the Clebsch–Gordan coefficients, respectively and

χ(+) =
1√
2


−1

−i
0


 , χ(−) =

1√
2


 1

−i
0


 ,

χ(0) =


0

0
1


 . (A.6)

Note that the energy shift (A.5) does not depend on the
magnetic quantum number ν. Substituting here the ex-
pression (A.4), and calculating the integral, we finally ob-
tain

∆Eem
nlj = −M3

d +M3
π

8M3
dM

3
π

(αµd

n

)4
{

4n
l + 1/2

− 3
}

+ δl0
2

3n3 α
4µ3

d(〈r2d〉 + 〈r2π〉)

− α4µ3
d

4MdMπn4

{
−4nδl0 − 4 +

6n
l + 1/2

}
+ ∆EQ

nlj +∆EM
nlj +∆Evac

nlj , (A.7)

where for l 
= 0

∆EQ
nlj = (−1)(l+j+1) 2α4µ3

d

n3 µQ

√
30(2l − 2)!
(2l + 3)!

×
{
l 1 j
1 l 2

}
, (A.8)

∆EM
nlj = (−1)(l+j) α

4µ3
d

n3 2
√

6
(

1 − µ̄M

2M2
d

+
µ̄M

MdMπ

)

×

{
l 1 l
1 j 1

}
√
l(l + 1)(2l + 1)

, (A.9)

and for l = 0, ∆EQ
nlj = ∆EM

nlj = 0. The quantities in the
braces denote the Wigner 6j symbols. Finally, the vacuum
polarization contribution is given in (3) of [31]. We do not
display it here.

Taking l = 1, we have

∆EQ
n1j =

α4µ3
dµQ

3n3




1 ; j = 0

− 1
2 ; j = 1

1
10 ; j = 2




=
0.015 eV
n3




1 ; j = 0

− 1
2 ; j = 1

1
10 ; j = 2


 , (A.10)

∆EM
n1j =

2α4µ3
d

3n3

(
1 − µ̄M

2M2
d

+
µ̄M

MdMπ

)



1 ; j = 0

1
2 ; j = 1

− 1
2 ; j = 2



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=
0.027 eV
n3




1 ; j = 0

1
2 ; j = 1

− 1
2 ; j = 2


 . (A.11)

As we see, the splitting of the energy levels is tiny. Note
that in the averaged level energy, defined by (2.1), these
contributions vanish: ∆EQ

nlj = ∆EM
nlj = 0. The remain-

ing contributions can be rearranged in order to allow the
comparison with the results existing in the literature. In
this manner, we finally arrive at the result given in (2.2)
and (2.3).

Appendix B: Table of integrals

After integrating over the 0 components l0, k0, the quan-
tity Ra in (3.22) can be rewritten as

Ra =
∫

ddl

(2π)d

ddk

(2π)d

2m3(d2
+ − 2d2

−)
(γ2 + l2)(γ2 + k2)

× 1

γ2 + 1
2

[
l2 + k2 + m

Mπ
(l − k)2

] . (B.1)

Introducing Feynman parameters and carrying out the in-
tegration over the momenta in the standard manner, one
gets

Ra = 2m3(d2
+ − 2d2

−)
Γ (3 − d)µ2(d−3)

(4π)d

(
γ2

µ2

)d−3

×
∫

dx1dx2dx3δ(1 − x1 − x2 − x3)[Ga]−
d
2 ,

Ga = x1x2 +
x3

2

(
1 − x3

2
+

m

Mπ

)
, (B.2)

where µ denotes the scale of dimensional regularization.
Renormalizing Ra according to the MS prescription, for
the finite part we get

R fin
a =

m3(d2
+ − 2d2

−)
32π3

(
xa ln

γ2

µ2 + Ja

)
+O(d− 3) ,

xa = −
∫

dx1dx2dx3δ(1 − x1 − x2 − x3)[Ga]−
3
2

= −8Mπ

m
arcsin

m

m+Mπ
= −1.2569 · · · ,

Ja =
1
2

∫
dx1dx2dx3

×δ(1 − x1 − x2 − x3)[Ga]−
3
2 ln[Ga]

= −1.1334 · · · . (B.3)

In the same manner, one obtains

Rb = 2m3(d2
+ + 2d2

−)
Γ (3 − d)µ2(d−3)

(4π)d
(B.4)

×
∫ 1

0
dx(1 − x)

(
xm

2µN

)− d
2 (

1 − µNx

2m

)− d
2
,

where µN = mMπ(m + Mπ)−1 is the reduced mass in
the πN system. After the renormalization one may evalu-
ate the remaining integrals analytically. As the result, one
obtains

R fin
b =

m3(d2
+ + 2d2

−)
32π3

(
xb ln

γ2

µ2 + Jb

)
+O(d− 3) ,

xb = 32κ
3
2
√

1 − κ = 0.5098 + · · ·

Jb = 16κ
3
2

{
2√
κ

(1 − 2κ) arcsin
√
κ

−
√

1 − κ (2 + ln(1 − κ) − ln 4κ)
}

= −0.3731 + · · · , κ =
µN

2m
. (B.5)

The contribution Rc can be evaluated in a similar manner.
We do not display this calculation here, since this contri-
bution is proportional to a2

+ and drops anyway. The same
method can be applied to the calculation of the diagrams
contributing to the threshold scattering amplitude A(µ).

Appendix C:
Resonance saturation for the LEC f0

In order to get an estimate for the LEC f ′
0, we have cal-

culated the tree amplitude of the process πNN → πNN
in the theory with the explicit ∆, N∗(1440), scalar and
vector mesons in the limit when masses of all above res-
onances become very large. At threshold, the ∆ and the
vector meson do not contribute3. In Fig. 10 we display an
example of a diagram that does not vanish at threshold.
One has four such diagrams (insertion of N∗(1440) in each
nucleon leg), as well as the diagrams which are obtained
by a permutation of the outgoing nucleon legs.

The Lagrangian describing the interactions between
nucleons, pions, scalar mesons and the N∗(1440) is given
by (see also [46])

L∗ = gsNNSN̄N + [gsNN∗SN̄∗N + h.c.]

+
[
c∗1N̄

∗χ+N − c∗2
m∗ 2 (∂µ∂νN̄

∗)uµuνN + h.c.
]
, (C.1)

where χ+ = M2
π(2 − π2/F 2 + · · · ) and uµ = −τ∂µπ/F +

· · · , and m∗ denotes the mass of the N∗(1440). The con-
tribution to the scattering amplitude at threshold in the
pertinent spin–isospin channel from the diagram in Fig. 10
is given by

T ∗ = −(2m)2
4M2

π(c∗1 − c∗2)gsNNgsNN∗

F 2m∗M2
S

× (χ†
1χ1χ

†
2χ2 − χ†

1χ2χ
†
2χ1) , (C.2)

3 Vector mesons are described by antisymmetric tensor fields.
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N* N*

S

S

Fig. 10. Tree-level contribution to the scattering amplitude
πNN → πNN with the exchange of the N∗(1440) and the
scalar meson

where MS stands for the mass of the scalar meson. From
the above expression, one may read off the contribution
to the LEC f ′

0:

f ′
0 =

ξ

2F 4Mπ

(
Mπ

4πF

)2

,

ξ = −256π2F 4(c∗1 − c∗2)gsNNgsNN∗

3m∗M2
S

, (C.3)

where, according to the natural-size arguments (see
(4.14)), the quantity ξ must be of order 1.

In the numerical estimates, we use the scalar meson
mass MS = 550 MeV (as it was also done in [46]). Fur-
ther, gsNN and gsNN∗ denote the values of the pertinent
formfactors at zero-momentum transfer. With the choice
of monopole formfactor FS(q2) = (Λ2

S − M2
S)/(Λ2

S − q2)
with ΛS = 1700 MeV for both SNN and SNN∗ vertices,
we deduce gsNN = 7.57 and gsNN∗ = 3.66 from the mass-
shell values given e.g. in [47]. Further, in the same paper,
one finds two different values for the constants c∗1, c

∗
2:

c∗1 = −7.27 GeV−1 , c∗2 = 0 [Set 1] ,
c∗1 = −12.7 GeV−1 , c∗1 = 1.98 GeV−1 [Set 2] .

(C.4)

Substituting these values, we get ξ = 28 [Set 1] and
ξ = 57 [Set 2] that obviously contradicts our natural-size
estimate. Note that the values for c∗1, c

∗
2 given in [47] also

do not agree with the result of the fit c∗1 + c∗2 = (−1.56 ±
3.35) GeV−1 from [41]. However, in order to use the latter
fit in our estimate, needs one more relation between c∗1 and
c∗2. We get this relation, assuming that these constants are
saturated by the scalar meson exchange. The Lagrangian
describing the interaction of pions with the scalar field
with total isospin I = 0 can be taken from [48]:

LS = c̃dS Tr(uµu
µ) + c̃mSTr(χ+) ; (C.5)

from the saturation hypothesis one gets c∗1/c
∗
2 = c̃m/c̃d =

4.2/3.2 (in the last equation, we have used numerical val-
ues from [48]). Together with the value of c∗1 + c∗2 from
[41] this yields the estimate ξ = 0.8 ± 1.8, which is in
a reasonable agreement with the natural-size conjecture.
Note that, albeit that the resonance saturation method at
present does not lead to an improved accuracy as com-
pared to the dimensional analysis, the above discussion

demonstrates the feasibility of estimating f ′
0 and eventu-

ally f0 through resonance saturation. What is needed to
this end is to determine the LECs c∗1, c

∗
2 more accurately

from the fit to N∗(1440) → Nππ and, in particular, to
resolve the large discrepancies reported in [41,47].
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